

Journal of Nonlinear Analysis and Optimization

Vol. 16, Issue. 1: 2025

ISSN : 1906-9685

A Secure Deduplication of Textual Data in Cloud

Environments

GANGULA BALAJI1, Dr. B.V.S Varma2, Dr. G. SATYANARAYANA3
#1 M.Tech Scholar and Department of Computer Science Engineering,

#2 Professor, Department of Computer Science and Engineering, DNR College Of Engineering and Technology,

Bhimavaram, AP, India.

#3 Professor, HOD Department of Computer Science and Engineering, DNR College Of Engineering and

Technology, Bhimavaram, AP, India.

ABSTRACT:

Present days cloud computing is exceptionally well

known and it is spread colossally everywhere

throughout the world. Because of expanding vast sum

individual data in the cloud condition there are some

issue for dealing with the mass data openly cloud space.

Data de-duplication is vital system for data pressure

which is utilized to wipe out the copy data in the cloud

condition. Thus apply the data deduplication method at

client side for diminish the excess in there data.

Deduplication at Client side system is utilized to

recognize copy data as of now at the client and spare the

transfer speed of data and transferring chose files to the

server. Concurrent encryption is another system which

is utilized to better ensure the security of data at client

side. Subsequent to encoding data utilizing concurrent

key at that point figure is shape, these figure send to

cloud before client hold a key. The deterministic idea of

encryption, when the indistinguishable data will be

transferred with same focalized key and same figure

message then deduplication plot keep the copy data.

Subsequent to contrasting the data base if coordinate is

discovered then just metadata of square store in

Database profiler.

Catchphrases: cloud computing; deduplication; copy

check; security; concurrent encryption;

I. Introduction

Nowadays, the sensitive

 advancement of computerized affluence

continues raising the interest for arrange limit and

extra storage, and furthermore an extending necessity

with less cost for the utilization of storage and system

transmission capacity keeping in mind the end goal to

exchange data. Despite these basic inclinations in

sparing assets, deduplication brings various security

issues, fundamentally in light of the multi possession

challenges. For example, a couple of aggressors target

either the usage of data transfer capacity or the

security. For example, a client may check whether

another client has successfully exchanged a record, by

endeavoring to outsource a similar archive to the

cloud. Starting late, to direct these worries, various

endeavors have been made to propose assorted

security models. These diverse schemes are called

Proof of Ownership framework (PoW). The storage

server is allowed to check a client data possession in

light of hash regard. In spite of that the present PoW

schemes have kept an eye on various security

properties, in any case still require a wary idea of

potential assaults, for instance, spillage of data and

toxin assaults. So another cryptographic system has

been proposed for secure Proof of Ownership (PoW).

With a specific end goal to beat security issues in

storage, this strategy utilize concurrent encryption and

furthermore the Merkle-based Tree. This strategy is

effective in giving dynamic sharing between clients.

Utilizing the Merkle-based Tree for the data which is

scrambled infers an identifier which is remarkable.

This identifier permits checking the nearness of similar

data in remote cloud servers. Furthermore, accordingly

productive data deduplication is accomplished.

2213 JNAO Vol. 16, Issue. 1: 2025

II. Related Work

In 2002 J. R. Douceur et al. [5] considered the issue of

deduplication in multi-inhabitant condition. The

creators proposed the utilization of the merged

encryption, i.e., getting keys from the hash of plaintext.

At that point M.W.Storer et al. [6] brought up some

security issues, and exhibited a security model for

secure data deduplication. Notwithstanding, these two

conventions center around server-side deduplication

and don't consider data spillage settings, against

malevolent clients. In this paper [7] M. Bellare et al.

Gives either security confirmations or assaults for

countless based distinguishing proof and mark schemes

characterized either unequivocally or verifiably in

existing writing. Hidden these is a system that from one

perspective clarifies how these schemes are inferred

and then again empowers measured security

examinations, subsequently understanding,

disentangle, and bind together past work. They likewise

dissect a bland legends development that specifically

yields personality based recognizable proof and mark

schemes without arbitrary prophets. In this paper J. Xu

et al. [8] proposed developing requirement for secure

cloud storage services and the alluring properties of the

concurrent cryptography lead us to join them,

subsequently, characterizing an imaginative answer for

the data outsourcing security and effectiveness issues.

Our answer depends on a cryptographic use of

symmetric encryption utilized for enciphering the data

document and hilter kilter encryption for Meta data

files, because of the most elevated sensibility of this

data towards a few interruptions. What's more the

Merkle tree properties, this proposition is appeared to

help data deduplication, as it utilizes a preverification

of data presence, in cloud servers, which is valuable for

sparing transfer speed. In addition, our answer is

additionally appeared to be impervious to unapproved

access to data and to any data revelation amid sharing

procedure, giving two levels of access control check. At

long last, we trust that cloud data storage security is still

brimming with challenges and of vital significance, and

numerous examination issues stay to be distinguished.

[10],[9] In this paper P. Anderson et al. 2010 [1]

proposed an answer here the data which is basic

between clients to build the speed of reinforcement and

decrease the storage prerequisite specifically

reinforcement calculation. Backings client-end per

client encryption is important for confidential

individual data. This gives the possibility to

fundamentally diminish reinforcement times and

storage prerequisite. Putting away immense measure of

data in PC or PCs causes poor network additionally

might be burglary because of equipment

disappointment. However Network data transfer

capacity can be a contain neck and Backing

straightforwardly to a cloud can be expensive are not

tended to. Traditional reinforcement arrangements are

not appropriate to this condition. So client side

deduplication fundamental for confidential individual

data. In this paper J.R.Douceur et al. The Farsite

appropriated record framework gives accessibility by

imitating each document onto different PCs. In the

perspective of the way that this replication expends

impressive storage space, it is basic to recover utilized

space where conceivable. Estimation of more than 500

work area document frameworks demonstrates that

almost 50% of all expended space is possessed by copy

files. So there is have to show an instrument to recover

space from this coincidental duplication to make it

accessible for controlled record replication. Our system

incorporates concurrent encryption, which empowers

copy files to join into the space of a solitary record,

regardless of whether the files are encoded with various

clients. [3] In this paper M. Mulazzani et al. [4] all

through the previous couple of years, a gigantic number

of online record storage services have been presented.

In the meantime as a few of these services give

fundamental usefulness, for example, transferring and

recovering files by a particular client, further developed

services offer highlights, for example, shared

envelopes, constant affiliation, and minimization of

data exchanges or unhindered storage space. Reviews

of existing document storage services and look at

Dropbox, a propelled record storage arrangement, top

to bottom. In view of the outcomes they demonstrate

that Dropbox is utilized to store copyright-shielded files

from a mainstream record sharing system. In this paper

M. Bellare et al. Message-Locked Encryption (MLE),

where the key under which encryption and decoding are

performed is itself gotten from the message. MLE gives

an approach to accomplish secure deduplication, an

objective right now focused by various cloud-storage

suppliers. MLE is a crude of both reasonable and

hypothetical concern. [2].

III. BACKGROUND

Deduplication

2214 JNAO Vol. 16, Issue. 1: 2025

It is worth mentioning that deduplication can either be

file-level [2] or block-level [2]. The latter corresponds

to the most common strategy and is also the one to

which we refer in this paper. The block size in

blockbased deduplication can either be fixed or variable

[3]. Convergent Encryption Convergent encryption

(CE)

Derives the encryption key from the plaintext. The most

common implementations compute key as the hash of

the plaintext. Here is a simple example which illustrates

how it works: Adam derives the encryption key from

her message M such that K = H(M), where H is a

cryptographic hash function; she can encrypt the

message with this key, hence: C = E(K, M) = E(H(M),

M), where E is a block cipher. By applying this

technique, two different users with two identical

plaintexts will obtain two identical ciphertexts since the

encryption key is the same. This allows the cloud

storage provider to perform deduplication on such

ciphertexts without having any knowledge on the

original plain-texts.

Weaknesses of Convergent Encryption

Discussions of vulnerabilities affecting convergent

encryption have been presented [3, 10, 9]. As discussed

in Section 1, potential malicious cloud providers can

perform offline dictionary attacks and discover

predictable files. This explains why a strategy is needed

to enforce security while retaining benefits offered by

deduplication and convergent encryption. IV. Secure

Deduplication Overview

In both the anonymous and authenticated models,

clients begin the ingestion process by transforming a

file into a set of chunks. This is often accomplished

using a content-based chunking procedure which

produces chunks based on the contents of the file. The

advantage of this approach is that it can match shared

content across files even if that content does not exist at

the multiple of a given, fixed offset [25]. The algorithm

selects chunks based on a threshold value A and a

sliding window of width w that is moved over the file.

At each position k in the file, a fingerprint,

Fk,k+w−1, of the window’s contents is calculated [28].

If Fk,k+w−1 > A, then k is selected as a chunk

boundary. The result is a set of variable sized chunks,

where the boundary between chunks is based on the

content of the data. Both file chunking and encryption

occur on the client. There are a number of benefits to

performing these tasks on the client, as opposed to the

server. First, it reduces the amount of processing that

must occur on the server. Second, by encrypting chunks

on the client, data is never sent in the clear, reducing the

effectiveness of many passive, external attacks. Third,

a privileged, malicious insider would not have access to

the data’s plaintext because the server does not need to

hold the encryption keys. Clients encrypt chunks using

convergent encryption, which was introduced in the

Farsite system [10]. Using this approach, clients use an

encryption key deterministically derived from the

plaintext content to be encrypted; both Farsite and our

system use a cryptographic hash of the plaintext as the

key. Since identical plaintexts result in the use of

identical keys, regardless of who does the encryption, a

given plaintext always results in the same ciphertext. K

= hash(chunk) (6) Compared to other approaches, this

strategy offers a number of advantages. As we have

shown in Section 3, if each user encrypted using his

own key, the amount of storage space saved through

deduplication would be greatly reduced because the

same chunk encrypted using two different keys would

be would result in different ciphertext (with very high

probability). Second, attempting to share a random key

across several user accounts introduces a key sharing

problem. Third, a user that does not know the data

plaintext value cannot generate the key, and therefore

cannot obtain the plaintext from the ciphertext. This

point is especially important since, in contrast to an

approach where the server encrypts the data, even a root

level administrator does not have access to a chunk’s

plaintext value without the key. The primary security

disadvantage of this approach, as identified in its

original description [10], is that it leaks some

information. In particular, convergent encryption

reveals if two ciphertext strings decrypt to the same

plaintext value. However, this behavior is necessary in

systems that use deduplication, since it allows a system

to remove duplicate plaintext data chunks while only

observing the ciphertext; information leakage is part of

the compromise needed to achieve space-efficiency

through deduplication. Each ciphertext chunk must be

assigned an identifier. In our system, each chunk in the

system is identified using the encrypted chunk’s hash

value, a technique sometimes referred to as

contentbased naming. chunk_id =

hash(e(hash(chunk),chunk)) (7) An alternative to using

2215 JNAO Vol. 16, Issue. 1: 2025

the hash of the encrypted chunk is to use the hash of the

hash of the plain-text chunk, i.

e., the hash of the encryption key is the chunk identifier.

This approach offers a number of attractive qualities.

First, performance is improved. In both approaches the

user performs two hashes: a key generation hash, and

an identifier generation hash. Assuming that key

lengths are smaller than chunk lengths, performing two

chunk hashes will be more expensive than a chunk hash

and a key hash. Second, if the identifier can be derived

from the key, then the file to chunk map only needs to

preserve the key, as opposed to the key and the

identifier. However, there is a large drawback of using

the hash of the key as the identifier: the chunk store

cannot verify that the chunk’s content-based identifier

is correct. As Section 3.2 explained, unverified chunk

signatures permit the use of targeted collision attacks.

The encrypted chunks themselves are stored within the

chunk store. In a distributed storage model, where there

may be multiple chunk stores, the chunk list can also

include the information needed to locate the correct

storage device. Alternatively, deterministic placement

algorithms can be used to locate the correct storage

devices based on the chunk’s identifier

V. Security Analysis

The evaluation of the two secure deduplication models

that we have presented is intended to demonstrate that

the system is secure in the face of a variety of

foreseeable scenarios. First, we examine the attacks that

an external adversary could inflict upon the system.

Second, we examine the security leaks possible when

faced with a malicious insider who might have access

to all of the raw data, such as system administrator with

root-level access. Third, we examine the security

implications involved when the keys in the system

become compromised.

5.1 External Adversaries

For a system to be considered secure, it must be able to

prevent information from leaking to an external

attacker. A passive example of such an adversary would

be an attacker that intercepts messages sent between

players in the system. An active example is an

adversary that changes or transmits messages. In both

the authenticated and external model, the passive

attacker problem is largely ameliorated by having the

client perform the chunking and encryption. Thus,

plaintext data is never transmitted in the clear.

However, the anonymous model assumes that the keys

can be exchanged in a secure manner but does not

explicitly state how this is accomplished. A potential

area of future work could be to define a secure protocol

for this procedure. Since data transmitted between

players is always encrypted, the danger from an active

adversary is one of messages being changed. For

example, in the basic models we have presented, a

chunk could be intercepted en route to the chunk store

and modified. While our design does not explicitly

address such scenarios, these attacks can be largely

mitigated through the use of transport layer security

(TLS) approaches such as Secure Sockets Layer. As the

anonymous model includes the goal of hiding the user’s

identity, an external adversary can gain some

information by identifying where requests originate

from. As with the man-in-themiddle type attacks

previously discussed, our system does not directly deal

with the issue, however solutions such as onion routing

have addressed this concern, and are compatible with

our design [12].

5.2 Internal Adversaries

As discussed in Section 3, a secure system must also

provide protection from internal attackers. To this end,

we analyze the ability of an inside adversary to launch

attacks based on their location within the system and

across their potential access levels. As in most systems,

a malicious insider with full access can change or delete

any information he chooses, resulting in a denial of

service attack. From a security standpoint, our goal is,

therefore, to limit an insider’s ability to make targeted

changes. There are two facets to limiting such changes.

First, we would like to limit an insider’s ability to target

specific files. Second, we would like to limit an

adversary’s ability to make undetectable changes;

overwriting a value with garbage is generally more

detectable that overwriting it with a semantically valid,

but incorrect value.

5.2.1 Authenticated Model

In the authenticated model, the metadata server does

leak some information to an internal adversary. First, an

insider has access to the file name to inode mapping.

Second, the inode number to encrypted map entry is

also available to an internal adversary. Finally, a

malicious insider can determine the files to which a user

has access, and the users that have access to a specific

2216 JNAO Vol. 16, Issue. 1: 2025

file. Using the information available, a inside attacker

at the metadata server is able to launch a variety of

attacks. First, an inside adversary can delete metadata

and revoke access for specific users. If the client is not

knowledgeable about which files it should be able to

access, this attack is undetectable. Second, when a

client requests a file, the map entry of a different file

accessible by the client could be returned. Whether or

not this attack is detected would rely upon the client’s

understanding of the file’s contents. Targeted changes

to file contents, however, require the adversary to

obtain the map key. In the current design, users grant

access by submitting map keys encrypted using the

authorized user’s public key. In this way, a malicious

insider is never exposed to the plaintext key needed to

access a map entry’s details. If the system were to

encrypt map keys, a malicious insider could change the

contents of map entries. One way to further strengthen

the system, then, would be to hide the map entry from

an inside attacker. This could be accomplished using a

technique such as the anonymous model’s map

references, which, as shown in Figure 4, requires the

map key in order to locate the map entry. Finally, if a

malicious insider at the metadata store also distributes

capability tickets, as is done in some systems, then it

can be assumed that the adversary also has access to

chunks; a malicious metadata store can simply issue

itself a valid capability. However, without access to the

map key, the adversary would not know which chunks

correspond to a give file, and would lack the key needed

to decrypt a chunk.

5.2.2 Anonymous Model

In both the authenticated and anonymous model, an

inside adversary at the chunk store would be unable to

modify data without being detected. Since the name of

the chunk is based on the content, a user would not be

able to request the modified chunk, or at the very least

could tell that the chunk they requested is different from

the chunk that was returned to them. An insider at the

chunk store could, of course, delete chunks or refuse to

fulfill chunk requests. In the anonymous model, the

metadata store does leak some information to an

internal adversary. First, an insider can deduce which

inode numbers map to which files. This is not a serious

issue because the user’s symmetric key is needed to

map inodes to map references. More importantly,

however, an insider could deduce which entries are map

references, as they will all be the same length. This is

due to the fact that their payload is always one key, as

opposed to a variable list of chunk metadata. One way

to avoid leaking the fact that an entry is a map-key is to

append some amount of random data to the entry.

5.3 Key Compromises

Any system that utilizes cryptographic primitives is

highly dependent on the controlled access of encryption

keys for the security of the system. As Kerckhoff’s

principle states, the security of the system comes from

an adversary not knowing the encryption key; it is

assumed that the adversary knows the protocols and

cryptosystems. Thus, one way to analyze a security

system is to examine the effects of compromised keys.

5.3.1 Authenticated Model

In the authenticated model, the user’s identity is tied to

their asymmetric key pair. Further, if an adversary

learns a users private key, it is assumed they have the

users complete key pair; the public key can easily be

acquired from a certificate server. In this scenario, a

malicious user may be able to fully impersonate the

key’s rightful owner, and obtain all the abilities of that

user. As a safeguard against this possibility, it is

recommended that authentication require more

information than the user’s key, but this approach is

outside the scope of our model. A compromise of the

other metadata key in the authenticated model, the map

key, results in a less drastic information leak. If an

adversary learns the map key, the problem of

authenticating to the metadata store still exists. Finally,

the revocation process can be used to generate a new

map key, making the old key invalid. Thus, the system

is relatively safe in the event of a compromised map

key. Similarly, if the last key of the authenticated

model, the chunk key, is compromised, the information

leak is rather small. This is due to the fact that an

adversary with the chunk key would still need to know

the chunk identifier, and be able to authenticate to the

chunk server in order to obtain plaintext data.

5.3.2 Anonymous Model

In the anonymous model, the user’s private, symmetric

key is very important to the security of the system. If a

malicious user obtains the user’s key, it can be safely

assumed that they can access any file that the user has

2217 JNAO Vol. 16, Issue. 1: 2025

stored a map reference for. Another potential attack

they can issue in this scenario is to extend the length of

the linked list of map entries indefinitely. However,

since the anonymous model uses immutable chunks, a

new key could be generated, and the file branched. If an

adversary obtains the map key, the adversary will only

need the inode number of the file to obtain plaintext

data. Assuming that the number of inodes is relatively

small, this can be accomplished using a brute force

attack. Additionally, as the system is immutable, even

generating a new map key will result in the original file

being compromised. As in the authenticated model, an

adversary with the chunk’s encryption key, would still

need to know the chunk identifier in order to obtain

plaintext data.

VI. Proposed System

The basic idea in this paper is that we can exclude

duplicate copies of storage data and limit the

destruction/damage of stolen data if we can reduce the

value of that stolen information to the attacker. This

paper makes the first such attempt to properly address

the problem of achieving efficient and reliable key

management in secure deduplication. We recommend

for providing security against insider attackers as well

as outsider attackers and monitoring them by using

Dekey, user behavior profiling and Decoy Technology.

Dekey is a new construction in which users do not need

to manage/store any keys on their personal but instead

can securely distribute the convergent key shares

through multiple servers. Dekey using the Ramp secret

sharing scheme (RSSS) validates that Dekey incurs

limited overhead in realistic environments. We propose

a new structure called Dekey, which provides efficacy

and reliability, guarantees for convergent key

management on user, cloud storage and service

provider sides. A new construction Dekey is proposed

to provide effective and reliable convergent key

management over convergent key Deduplication and

secret sharing. Dekey supports both whole file-level

and fixed/variable sizes block level Deduplication.

Security analysis proves that Dekey is secure in terms

of the definitions specified in the proposed security

model. In particular, Dekey remains protected even if

the adversary controls a limited number of key servers.

We device Dekey using the Ramp secret sharing

scheme(RSSS) that enables the key management to

adapt to different reliability and confidentiality levels.

Our assessment demonstrates that Dekey incurs limited

procedures in normal upload/download operations in

considerable cloud environments.

Fig. Proposed system Architecture

VII. Conclusion

In this paper, the notion of authorized data

deduplication was proposed to protect the data security

by including differential privileges of users in the

duplicate check. We also presented several new

deduplication constructions supporting authorized

duplicate check in hybrid cloud architecture, in which

the duplicate-check tokens of files are generated by the

private cloud server with private keys. Security analysis

demonstrates that our schemes are secure in terms of

insider and outsider attacks specified in the proposed

security model. As a proof of concept, we implemented

a prototype of our proposed authorized duplicate check

scheme and con-duct test bed experiments on our

prototype. We showed that our authorized duplicate

check scheme incurs minimal overhead compared to

convergent encryption and network transfer.

FUTURE WORK

While the models we have presented demonstrate some

of the ways that security and deduplication can coexist,

works remains to create a fully realized, secure, space

efficient storage system. Open areas for exploration

exist in both security, as well as deduplication. Storage

efficiency can be increased in a number of ways

through intelligent chunking procedures. For example,

the size of the file may be used to determine the average

2218 JNAO Vol. 16, Issue. 1: 2025

chunk size, potentially yielding greater deduplication in

data such as media files, which tend to be large and

exhibit an “all or nothing” level of similarity with other

files. However, since some large files, such as mail

archives or tar files, may be aggregations of smaller

files, another possibility would be to adjust chunking

parameters based on file types. Since chunking is done

at the clients rather than at the servers, this approach

only requires that clients agree on the way they divide

files into chunks. Moreover, taking this approach does

not increase the likelihood of collision, which remains

very small for chunk identifiers of 160 bits or longer.

Unfortunately, techniques.

REFERENCES

[1] R. Di Pietro and A. Sorniotti. Boosting efficiency

and security in proof of ownership for deduplication. In

Proceedings of the 7th ACM Symposium on

Information, Computer and Communications

Security,ASIACCS ’12, pages 81–82, New York, NY,

USA, 2012. ACM. [2] P. Anderson and L. Zhang. Fast

and secure laptop backups with encrypted

deduplication. In Proc. of USENIX LISA, 2010.

[3] M. Bellare, S. Keelveedhi, and T. Ristenpart.

Dupless: Server-aided encryption for deduplicated

storage. In USENIX Security Symposium, 2013.

[4] M. Bellare, S. Keelveedhi, and T. Ristenpart.

Message-locked encryption and secure deduplication.

In EUROCRYPT, pages 296– 312, 2013.

[5] M. Bellare, C. Namprempre, and G. Neven.

Security proofs for identity-based identification and

signature schemes. J. Cryptology, 22(1):1–61, 2009.

[6] M. Bellare and A. Palacio. Gq and schnorr

identification schemes: Proofs of security against

impersonation under active and concur-rent attacks. In

CRYPTO, pages 162–177, 2002.

[7] S. Bugiel, S. Nurnberger, A. Sadeghi, and T.

Schneider. Twin clouds: An architecture for secure

cloud computing. In Workshop on Cryptography and

Security in Clouds (WCSC 2011), 2011.

[8] J. R. Douceur, A. Adya, W. J. Bolosky, D.

Simon, and M. Theimer. Reclaiming space from

duplicate files in a serverless distributed file system. In

ICDCS, pages 617–624, 2002.

[9] D. Ferraiolo and R. Kuhn. Role-based access

controls. In 15th NIST-NCSC National Computer

Security Conf., 1992.

[10] R. C. Merkle. A digital signature based on a

conventional encryption function. In A Conference on

the Theory and Applications of Cryptographic

Techniques on Advances in Cryptology, CRYPTO

’87, pages 369–378, London, UK, UK, 1988.

Springer-Verlag.

Authors

Gangula Balaji pursuing M.Tech in

Department of Computer Science and

 Engineering from D.N.R

College of Engineering

 & Technology, Bhimavaram,

Andhra Pradesh, West Godavari

District,

534201, India. His area of interest in

Cloud Computing, Services.

Dr. B.V.S Varma is working as

Professor & Vice-Principal in the

Department of Computer Science and

Engineering in D.N.R College of

Engineering & Technology,

Bhimavaram, Andhra Pradesh,

West Godavari District, 534201,

India.

2219 JNAO Vol. 16, Issue. 1: 2025

Dr. G. Satyanarayana is working as

professor & HoD in the Department

of Computer Science and

Engineering in D.N.R College of

Engineering & Technology,

Bhimavaram, Andhra Pradesh, West

Godavari District, 534201, India.

